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One-dimensional anti-phase domain structures with an out-of-step vector u = (a + b)/2 sometimes have 
half periods of non-integral value. Fujiwara interpreted this structure as a disordered structure (a 
statistical assembly) deviating from a standard structure which he defined by a step function. In the 
present paper, it is pointed out that the unitary intensity of a superlattice reflexion for the standard 
structure is obtained in a much simpler form than that given by Fujiwara. By the use of this intensity 
formula we verify the fact that a pair of intensities with special/-indices, v and - v, is very strong while 
the others are extremely weak, so that we apparently obtain a non-integral value for the half period 
from the strongest pair. The statistical assembly, i.e. the disordered structure presented by Fujiwara, 
is interpreted using an easily understandable model, and a simple form of the corresponding intensity 
formula is obtained, which indicates that the intensities other than the pair, lv and I~, practically vanish. 
This fact implies that the non-integral half period, _~t, may be obtained experimentally from a pair of 
satellites corresponding to iv and i;. Some important remarks are made in the Appendix concerning the 
Fourier expansion of the step function. 

1. Introduction 

In part I of this series (Kakinoki & Minagawa, 1971) 
the one-dimensional anti-phase domain structures, with 
an out-of-step vector u = (a + b)/2 and the correspon- 
ding phase factor e = ( -  1) ~ +k, were classified into three 
kinds, and they were denoted by the layer sequence 
symbols which are similar to the Zhdanov symbol for 
the close-packed structures, as follows: 
(1) the complex out-of-step structure, denoted by 

(albla2b2...a,b,) with P =  ~ (at + b,), 
i=1 

(2) the complex APD (anti-phase domain) structure, 
denoted by 

([M][[~]) with [M]=(albla2[~2 . . .  as[~sas+l) 
and 

s+l 
P/2= M =  ~ as+ b~ , 

i=1 1=1 

* Present address: Department of Physics, Osaka Kyoiku 
University, Tennoji, Osaka, Japan. 

(3) the simple APD structure, denoted by 

(M]ASr) with P =  2M, 

where P is the period and at and b~ are the numbers of 
successive positive and negative layers respectively, 
where the positive and negative layers indicate the 
layers without and with the out-of-step vector, as 
shown in Fig. 1. The vertical and horizontal short 
lines in the symbols ([M]I[ASt]) and (MI~t)  mean that 
the last M layers are obtained by changing all the signs 
of the corresponding layers of the first M layers. 

The unitary intensities of superlattice reflexions in 
the case of simple APD structure are given by t  

I t = 0  for I: even 
Iz=4I~ for l: odd 

with 
1 (1) /~'= _ 

sin2~ l 
P 

t Refer to equations (I. 16), (I. 18) and (I. 19). In order to 
avoid confusion, the equation number in part I of this series is 
written as (I. 1), (I. 2) etc., and that in Fujiwara's (1957) paper as 
(F 1), (F2) etc. 
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For example, I / s  for M =  6 are as schematically shown 
in Fig. 2. In this case, the half period, M, is given by 

AB 
M -  (2) 

CD 
where CD is the separation between l=  - 1 and 1 cor- 
responding to a pair of the strongest intensities, and 
AB is that between 1=0 and I=P. 

In many peculiar cases, however, it happens that the 
values of M obtained from equation (2) are not integers, 
as found in some examples listed in Table 1. Such a 
non-integral value of the half period is here denoted by 

in order to distinguish it from integral M. 

Table 1. Examples of the alloys with 
non-integral values for the half period, fill 

/~r Reference 
Ag3Mg 1.77,-, 2.0 (a), (b) 
Cu3AulI 8"" 10 (c), (d), (e) 
Cu3Pt 6,,~ 8 (a) 
Cu3+Pd 7 ,-, 11 (a), (f), (g) 
CuAulI 5 ~ 6 (h), (i) 

(a) : Schubert, Kiefer, Wilkens & Haufler (1955). 
(b) : Fujiwara, Hirabayashi, Watanabe & Ogawa (1958). 
(c) : Scott (1960). 
(d) : Yakel (1962). 
(e) : Yamaguchi, Watanabe & Ogawa (1962). 
(f) : Watanabe & Ogawa (1956). 
(g) : Hirabayashi & Ogawa (1957). 
(h) : Jehanno & P6rio (1962). 
(i) : Toth & Sato (1962). 

Fujiwara (1957) interpreted the non-integral struc- 
ture as a disordered structure which he called the 
statistical assembly of irregular arrangements. This 
disordered structure is a structure deviating from a 
regular structure which he called the regular arrange- 
ments with uniform mixing. For brevity, in the present 
paper the former is called the statistical assembly and 
the latter the standard structure. Discussion of the statis- 
tical assembly is given in §§ 6 and 7. 

2. The standard structure 

Fujiwara defined the standard structure by the use of 
the step function* 

1 for 2k37/< ~ < (2k + 1)/~r 
S(~)= - 1  fo r (2k+ 1))l~r<~<2(k+ 1)214 

k" 0, +1, +2, . . .  (3) 

(F3)]" as follows: The sign of the nth layer is positive 
or negative according as S(n)= 1 or - 1 .  In this case, 
the period P of the standard structure is subject to the 
relation 

f = 2vff-I (4) 

* Fujiwara called S(~) the anti-phase function for the stan- 
dard structure. 

I" Refer to the footnote t on page 120. 

where v is the minimum positive integer in this relation 
[refer to (F4)]. The standard structure thus obtained 
from the step function is, for example, 

the complex out-of-step structure (222T2212~) for 
.~r-- 1.7, 

the complex APD structure ((22221)1(2222T)) for 

~Q= 1.8, 

and so on as shown in Fig. 3, where the upper row 
indicates the positive layer and the lower one the neg- 
ative layer. 

S(~) can be expanded in Fourier series as 
4 1 sin n (2m+l)~  (5) 

S°(~): -~- m = 0  f2m--+]- ~ -  

where the suffix 0 in So is added in order to distinguish 
S0(~) from S(~) with respect to their properties at 
singular points such as ~=0,  where S(0)= 1 while 
S0(0) = 0. He suggested that the strongest peak is found 
at 

l 1 
( -  P 2214 with l =  v (6) 

using an intensity formula for the standard structure as 
follows 

FF* = l N~=i So(n) exp (2rcin~) l z 

4 1 ~  1 [ { ( 2 m + l )  } 
= ~  2 m + l  exp i~ ~ + - - - - = - -  ( N - l )  

m=0 2M 

sin Nrc{(+(2m+ 1)/2/14} × 
sin zc{(+ (2m+ 1)/2/~r) 

1) } 
2M 

sin Nz~{(-(2m~ 1)/2M}] [ 2 

× ~-n~{-~-(2-m--m+i)/-]~ J l (7) 

where N is the total number of layers and ( is a con- 
tinuous parameter along c*, e* being the vector reci- 
procal to c corresponding to one layer thickness. Equa- 
tion (7) is the same as equation (F6) with slight modi- 
fications in notationS. Fujiwara also suggested that 
other peaks are extremely weak. As a result, CD in 
equation (2) turns out to be not the separation between 
l-- - 1 and 1 but that between l=  - v and v, and hence 
we apparently get the relation 

_ t '  _ ( 8 )  
CD 2v 

which is not an integer. 
Usually, the intensity formula is expressed as the 

product of a Laue function and the square of the 

:1: l in Fujiwara's paper is a continuous parameter along c* 
and is the same as ~ in the present paper. 
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absolute value of the structure factor. On the other 
hand, because equation (7) is not of this form, the 
numerical evaluation of equation (7) cannot be made 
unless the total number of layers, N, is given. In the 
present paper, equation (7) is rewritten in the form 
usual for intensity formula, and on this basis Fujiwara's 
suggestion is verified. Also, some important remarks 
are given relating to the application of the step func- 
tion of the form in equation (5) (Appendix F). 

3. The intensity formula for the standard structure 

Since the standard structure has a period P subject to 
equation (4), equation (7) is rewritten as 

FF* = I~ G2( () 

with 

sin z zcNoP 
G2(O= sin 21rP 

Iz= VzV~ with 

(9) 

with PNo = N 

P - 1  

~u,= ~ So(n) exp (inlO) (10) 
n = O  

2zc 
and O -  

P 

where the suffix l is determined by the location of each 
peak of the Laue function Gz(O at 

l 
~ -  p l: 0 , + 1 , + 2 , + 3 ,  . . . .  

Iz in equation (10) is the same as that in equation (1.7) 
with e. replaced by So(n). ! 

It should be noted that if we take a square of I~'zl 
after calculating Vz by the use of equation (5), as was 
done by Fujiwara with equation (7), an incorrect result 
is obtained in calculation of I~ (see Appendix F). The 
correct result is obtained by the use of the equation 

e - t  2zc 
I~= ~ DmcosmlO O-- e (11) 

m = 0  

given by equation (I.22), where Dm is the self-convo- 
lution of So(n), i.e. 

P - - 1  

Din= ~ So(p)So(p+m) (12) 
# = 0  

(see Appendix F). The calculation of I~ in terms of D,, 
is complicated so that the details are left to Appendices 
B and C. The result is given by 

(1,4) 
(13) I i -  sin2 zrx 

with 
2 n * + l  QP+I  , 

x =  ~ -  = v--v-~-ff-p , n  : 0 , 1 , 2 , . . .  H - 1  (14) 

(1,4) or generally (a, b)= 

J'a for v*" even, i.e. Case I (1 5) lb for v*" odd, i.e. Case II 

where v* is the minimum positive integer satisfying 
the relation 

v 'A4= H H: positive integer 
P = (1,2)H (see Appendix A) (16) 

and n* is a minimum positive integer including 0 sat- 
isfying the relations 

1 < 2n* + 1 = ( Q P  + l)/v < 2 H -  1, 
i.e. l=v(2n* + 1 ) - Q P  (17) 

Q being a positive or negative integer including 0. 
In Case II, i.e. the case of the complex APD structure 

(see Appendix A), since P is even and v = v* is odd, we 
have no solution of equation (17) if I is even. Thus we 
have 

~0 when l is even ] 
Iz= [41~' w h e n / i s  odd[ 

(18) ? 

, 1 / 
Iz - -  ~ - T ~ - - -  / 

sin 7ZX j 

which gives a selection rule for the complex APD 
structure. 

-~- stacking direction 

© ( © 

0 C 000 
© 
C C 

(a) positive cell (b) negative cell 

O .  Aatom O Batom 

Fig. l. Two kinds of unit cells in the one-dimensional anti- 
phase domain structure of A3B-type with an out-of-step vec- 
tor u = (a + b)/2. 

59"71 5971 

8'00 

I i I 
-1/12 () 1/12 3/12 5/12 7/12 9/12 11/12 1 

-1 0 1 3 5 7 9 11 12 : 1 
C A D B 

Fig. 2. The unitary intensities of the superlattice reflexions for 
the simple APD structure, (6 I(;), with P= 12. 
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Equations (13) and (18) are much simpler intensity 
expressions for the standard structure than equation 
(7). These equations give the square of the structure 
factor, and they may be calculated only if n* in equation 
(14) is given so as to satisfy equation (17). 

Appendix F should be referred to for some im- 
portant remarks on the Fourier expansion of the step 
function S(~). 

4. Some remarks on Iz 

We list here some general relations and special results 
which are derived in Appendix D. Since from equation 
(18) we have Iz=O for Case II with /:even, we may 
consider odd l only. Then, l is conveniently expressed as 

l = 2 r + l  for Case II. (19) 

(i) There is one to one correspondence between (l,r) 
and n* if (l, r) and n* are in the ranges 

O<(l , r )<_H-1  and 0 _ < n * < H - 1 .  (20) 

(ii) If the obtained n* is larger than p* which is 
given by 

p* =½[H-  1 ; H -  1 , H - 2 ] ,  (21) 

we may replace n* by n*' given by 

n*' = H -  1 - n*. (22) 

Here the expression [a; b, c] means 

! for Case I 
[a;b,c]= for Case II-odd ( H = M : o d d )  (23) 

for Case II-even (H= M" even). 

By the replacement of n* by n*', the range of n* may 
be further limited as 

0 < n* <p*. (24) 

The use of n*' corresponds to the use of the relation 
l e_z=I t  given by equation (I.27). 

(iii) Any (/,2r+ 1) can be expressed in the form 

( l ,2r  + 1)+qP=(2lo+ 1)v (25) 

where q and I0 are integers and in this case n* is given by 

0 < n* = 1o - m H <  H -  1. (26) 

Here m is an integer and is chosen so as to satisfy the 
above inequalities. 

(iv) We can derive the following special results: 
P - - 1  

(a) I0=1 • ~. Dm=l  for CaseI. (27) 
m = 0  

P - - 1  

(b) IM=4 • ~ (-1)mDm=4 for Case II-odd. 
m = 0  

(28) 
(c) When A~ is a half odd integer, we have 

. . . .  !----- for l: even 
COS • 

I, = 2P (29) 

sin2 tel for l: odd 

which is the same as equation (I.15) for (M M +  1). 
(v) Let A M  be the fractional part of M, and if I is 

expressed in the form 

l= 2vlo + l' with 10" integer and 0 < l '  < 2 v -  1, (30) 

then values of Q in equation (17) are listed in Table 2 
for Case I with AM=0-1, 0.3, 0.7, 0.9 and for Case 
II with AM=0.2, 0.4, 0.6, 0.8 (refer to Table 6). 

5. The strongest intensity of It 

One of the solutions of equations (25) and (26) is given 
by 

( l , 2 r + l ) = v  .'. q = l o = n * = m = O  

+1 ..--- 

To i I! Jl I! ! 1 11! 2 ! !I 
0 1"7 3"4 5'1 6"8 8"5 10"2 11"9 13"6 15"3 17 

(2 2 2 i" 2 "2 1 "2 2 7) 

(.) 

+1--~ 

-1 --,- 
0 1 "8 3"6 5'4 

((2 "2 2 "2 

il i I ,o 8 1 1  
7"2 9 

1) ] (2 

[! 11,3 
r' '211 

10'8 12"6 

, , I  11,7 
I '° ' ° l l  
14"4 16"2 

2 2 7))  

18 

(b) 

Fig. 3. The standard structures obtained from the step function S(#). (a): .~r= 1.7, (b): ]~r_-1.8. 
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U_ _ 

O ~ 

Table 2. Values o f  Q 
(2g + 1)v-  l '  

(1,2)AH [Equation (A49)] 

Case I 
A M  0.1 0.3 0.7 0.9 
AH 1 3 7 9 

l" 
0 5 5 5 5 
1 4 8 2 6 
2 3 1 9 7 
3 2 4 6 8 
4 1 7 3 9 

5 0 0 0 0 
6 9 3 7 1 
7 8 6 4 2 
8 7 9 1 3 
9 6 2 8 4 

AH= v ' A M =  10AM 

Case II 
0.2 0.4 0.6 0.8 
2 4 6 8 

2 1 4 3 
1 3 2 4 
0 0 0 0 
4 2 3 1 
3 4 1 2 

A M  
2AH 

l" 
1 
3 
5 
7 
9 

2AH= 2 v ' A M =  10AM 

6. The intensity formula for the statistical assembly 

According to equation (33), the ratio of the second 
strongest intensity, I3v, to the strongest one, Iv, is larger 
than 9 x for any standard structure. An example is shown 
in Table 3 where the unitary intensities for the standard 
structure with )Q=l .8 ,  i.e. ([M]I[~]) with [M]=  
(222~1) and P =  18, are listed. In this case the ratio, 
1~ (=I~'5):I~, is about 0.12. Therefore, with such a 
standard structure I~ and 1~5 may be clearly observed 
on diffraction photographs. In practice, however, they 
were observed only very faintly. In order to elucidate 
this circumstance, Fujiwara considered the statistical 
assembly,  i.e. a disordered structure which deviates 
from the standard structure in the following way. 
Similar to the standard structure which has been defined 
by the use of the step function given by equation (3), 
the disordered structure, i.e. the statistical assembly, is 
defined by the use of an assembly funct ion* 

with 

4 co 7/: 
f (~ )=  - ~  ,,=o ~ b2m+l sin - ~  (2m+ 1)4 

r/2 n 
b2m + 1 = erf (r/) sin (2m + 1)r/dq 

~0 - ~  

(34) 

(35) 

which, with equations (13) and (14), gives 

(1,4) 4P z 1 1 
Iv= n - n 2 ( s i n n x ] Z  with x =  (~,~)/s. 

sin2 (2,1)P \ - -~Z- - !  (31) 

Since l e - ~ =  It from equation (I.27), we get the relation 

8 2Iv 
0.81 = --~ < Rv = ~ < 3=0.89 (32) 

where ~ comes from the fact that the minimum P is 3 
for ~ r =  1.5 and hence x < +. Since we have the relation 

P - - I  

I , = P  z 
l = 0  

from equation (I.27), equation (32) means that the sum 
of the remaining intensities except l=  v and l - - P - v  is 
less than 0"2P z, i.e. Iv is the strongest and the others are 
weak. Thus Fujiwara's suggestion is verified, namely 
the strongest peak is found at the position given by 
equation (6). 

The second strongest intensity is given for 

n * = l  and ( / , 2 r + l ) = 3 v  
with 10=l and q = m = 0 ,  

and its ratio to Iv is given by 

I3v 1 
z n z (33) Iv (3_4 sin _~__H ) >~"  

Table 3. The unitary intensities, 11, o f  the 
supeHattice reflexions f o r  ([M]115S¢]) with 

[M]=(22221) and P =  18 

l ~'=1/18 I]  
1, 17 0.056, 0.944 1-1 
3, 15 0.167, 0.833 4.0 
5, 13 0.278, 0.722 33.2 
7, 11 0.389, 0.611 1-7 

9 0.5 1.0 
Y.I~' =92=81 

[refer to (F14)]. In the standard structure the nth layer 
has a value + 1 or - 1 according as S(n) = 1 or - 1, 
while in the statistical assembly the effective value of 
the nth layer is put equal to f (n ) .  The assembly func- 
tion f ( ~ )  is a weighted mean function of modified step 
functions which are defined as follows: for a modified 
st"~e]9 function, the boundaries at ~ = 2k~Q and (2k + 1)/Q 
in the original step function, S((), are allowed to shift 
by fi as shown in Fig. 4 and each shift occurs at each 
boundary independently of other boundaries, with a 
probability 

N(fi ,  a ) -  1 ~2 
1/2_~ exp ( -  ~-~-a2 ) (36) 

which is a normalized Gauss function with a standard 
deviation a. If the absolute value of the separation be- 

* Fujiwara called f(~) the anti-phase function for the statis- 
tical assembly. 
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tween a point at 4 = n  and its nearest boundary is 
denoted by x,, as shown in Fig. 5 where the case of the 
boundary at 2k37/is shown, then the probability, w +, 
that the nth layer is positive is given by 

w+ = I _ ~  N(fi, cr)dO = ½{1 _+ erf (x.)} 

where the upper or the lower sign in the double sign 
is taken according as the nth layer in the standard struc- 
ture is positive [Fig. 5(a)] or negative [Fig. 5(b)], and 
eft(x) is the error function defined as 

-~X 
eft(x) = 2 t0 N(O, tr)d6 with erf (c~) = 1. (37) 

Similarly, the probability, w; ,  that the nth layer is 
negative is given by 

i 
oo 

w ; =  N(8,a)dS=½{1 T- eft (x.)}. 
4-Xn 

Since these results hold even in the case where the 
boundary is at (2k+ 1)2fir, they are generally rewritten 
as  

w = ½{ 1 + e~°)erf (x.)} 
(38) w; = ½(1 - e(~°)erf (x,)} 

where 

1 when the nth layer in the standard 
e~0) = structure is positive 

- 1  when the nth layer in the standard (39) 
structure is negative. 

Thus, the effective value, f(n), of the nth layer is given 
by 

f (n )=  w + - w~- = e(.°)erf (x.).  (40) 

+I-" 

-I 
! ! 

2k/~ (2k+ I )/~4 

Fig. 4. The shift, 8, of the boundaries at ~ = 2k3~r and (2k + 1)~r 
in the original step function S(~) shown by the thick lines. 

+1-.- 
' "  i . . . . . . .  

Xn ~ 4---- Xn " - ~ l  

2k/1~/ 2k/V/ 

(a) (b) 

,4 

Fig.5.  The separat ion,  x,,, between a point  at ~ = n  and  its 

nearest boundary at 2kM. (a): when the nth layer in the 
standard structure is positive, (b): when it is negative. 

This f(n) can be generalized to the functions of con- 
tinuous 4, as 

f(4) = erf (4) for 0 < 4 < - -  
2 

f (~ )=e r f  (/14-~) for M < ~ </14 

f(4) = - e r f  (4-3~ t) for ~ r < ~ <  _ _  
2 

f ( 4 ) = - e r f ( 2 / 1 4 - ~ )  f o r - ~  M- < ~ < 2 M .  

(41) 

These functions are shown by the thick curve in Fig. 
6 where the thin line shows S(4). 

Since f(4) has a periodicity of 2/hr, f (4  ) can be ex- 
panded, as was done by Fujiwara, in Fourier series, 
and we obtain equations (34) and (35). Thus, the in- 
tensity formula for the statistical assembly is given by 

I N-1 12 2z~ (42) ~ * =  ~ f(n) exp (inlO) with 0= - i f - .  
n=0 

Equation (42), with substitution of equations (34) and 
(35), is the same as the first term of equation (F14). 
As in the case of equation (7), equation (42) is not of the 
form of the usual intensity formula. By noticing that 
f(n) has a periodicity of P given by equation (4), how- 
ever, equation (42) can be rewritten as 

with 
~ *  =I~G2(~) (43) 

-- I P-1 [2 
1,= ~ f(n) exp (inlO) . (44) 

n=0 
Thus, the structure of the statistical assembly can be 
considered as a hypothetical structure in which the 
nth layer has the effective value equal to the height 
of the vertical thick line at ~ = n  as shown in Fig. 7. 

On substitution of equations (34) and (35) in (44), 
Ii becomes )2 

II = 16v 2 b2,* +l+2m~ (45) 
m= -oo 

=(1,4) [2 ~ erf (-~.) sin 2rcpx + [0;0,1] 
L p=l 

x ( -  1)"* erf (46) 

(see Appendix E), where n*, p*, x and the notation 
[a;b,c] are given by equations (17), (21), (14) and (23) 
respectively. Equation (46) is an intensity expression 
for the statistical assembly which is much simpler than 
equation (42) combined with equations (34) and (35). 
For lz corresponds to the square of the structure factor 
in the usual intensity formula while equation (42) is 
not expressed in the form of the product of a Laue 
function and the square of the structure factor. 
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The strongest intensity in the statistical assembly is 
found at l=  + v as in the case of the standard structure. 
The ratio of the second strongest intensity, la~, to the 
strongest one, I~, varies with a in equation (36). From 
equation (46) with M =  1.8, the ratio is calculated as 
shown in Table 4, in which it can be seen that the in- 
tensities of the reflexions other than l=  + v may prac- 
tically vanish for suitably selected values of a. In such 
a case, only a pair of satellites corresponding to 1~ and 
1; may be experimentally observed. As a result, a non- 
integral value for the half period, .~r, will be observed 
from these satellites. 

Table 4. The ratio of  the second strongest to the 
strongest intensity in the statistical assembly with 

~ r =  1.8, v * = v = 5 ,  H = 9  andP=18  

The  ra t io  decreases with increasing a, the s t anda rd  deviat ion.  

a Rat ios  

0 0.0933 
0"05 0.0933 
0.10 0.0859 
0.16 0.0595 
0.20 0.0419 
0.25 0.0242 
0-32 0"0090 
0-40 0.0018 
0.50 0.00000 

7. The interpretation of the statistical assembly 

The statistical assembly discussed in §6 is interpreted as 
follows" For the example shown in Fig. 7, x, and w + 
and w~ given by equation (38) are obtained as shown 
in Table 5. If  we distribute + 1 and - 1 at 18 positions 
from n = 0 to n = 17, then we have C =  218 configurations 
in total. Corresponding to each configuration, the struc- 
ture factor is denoted by F~ with s =  1,2,3, . . .  ,C. If, 
for example, configuration s = 1 is (11111 . . .  11) (all 1), 
then, from Table 5 its existence probability, w (I), is 
given by 

w " ) = w + w + w ~ w  + r v  

=~-~6{1 + e f t  (0.8)} { I - e f t  (0"2) 3 { 1 - e f t  (0.6)} W 

with 
17 

W= II w + 
n=4 

because the shifts of boundaries of the original step 
function, S(~), occur independently of each other. If 
configuration s = 2  is (11111 . . .  11), w (2) is given by 

W (2) + + - + W - ~ . W o W l W 2 W  3 

= ~ ( 1  + err(0.8)} {1 + e f t  (0.2)} { 1 - e f t  (0.6)}W. 

If configuration s = 3 is 0-1111 . . .  11), w (a) is given by 

w(3)=wowiw~w~ W 
=-~6(1-e r f  (0.8)} { 1 - e r f  (0.2)3 { 1 - e f t  (0.6)} W 

and so on. 

If the continuing probability, Pst, of finding F~ after 
Fs is equal to w "), i.e. the existence probability of Ft, 
then the case concerned is that called the case of no- 
correlation (Kakinoki & Komura,  1952), and the in- 
tensity is given by 

=sin2rcN°P~ +No{F---Z-(F)E},PNo=N (47) 
l ( 0 = I z  sinE zcp~ 

with 

I I'~ = w°)Fs(l) (48) 
S = l  

and c (49) 
e 2 =  ~ w('r~(~)G*(0 • 

S=1 J 

The first term with Laue function in equation (47) is 
the Laue term which gives sharp maxima at ( = l i P  
with/:integers, and the last one with No is the diffuse 
term. The structure factor for the configuration s, Fs, 
is generally expressed as 

P - 1  

F~(~)= ~. ~n~O) exp (2rcinO (50) 
n = 0  

where 
1 when the nth layer in configuration 

e~s) = s is positive 

- 1 when the nth layer in configuration 
s is negative, 

and from the definition we get the relations 

C 

w(S)e(#) = w + - w =  =f(n) 
$=1 

and 
c 

(s) (s) (s) __ w 8,, en+m-f (n) f (n+m).  
S = l  

(51) 

(52) 

where n*, p* and the notation [a;b,c] are given by 
equations (17), (21) and (23) respectively. 

In this way, the model of the statistical assembly 
presented by Fujiwara can be interpreted as a disor- 
dered structure which consists of all possible config- 
urations with existence probabilities, w (s), corresponding 
to the case of no-correlation. Equation (54) multiplied 
by No is the same as the second and the third terms of 
equation (F14). 

Thus, I~ and the diffuse term can be calculated as 
follows (see equations (A51), (A52) and (A58) in Ap- 
pendix E)" 

I~=I, (53) 
P - - 1  

F2 - (F) z= P -  Z fZ(n) = P 
n = 0  

{ , - (2,4) ~ erf 2 - ~  +[0;0,21erf 2 (54) 
p = l  
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8. Discussion 

If the standard deviation a in equation (36) tends to 0, 
eft(x) tends to 1 except at x=O. At the limit a - +  0, 
equations (46) and (54) tend to 

Ii = (1,4) = sin 2npx = (1,4) cot 2 nx (55) 

and 

FZ-(F)z=(1 ,2)  (56) 

respectively. However, equation (55) is different from 
(13) but equal to equation (A65) in Appendix F. In 
addition, the quantity in the left hand side of equation 
(56) is what should vanish for the standard structure. 
These inconsistencies are due to the fact that f(~) in 
equation (34) does not tend to S(~) but to S0(~) in 
equation (5) at the limit a ~ 0, because bzm+l in equa- 
tion (35) tends to M/{(2m + 1)n}. We must be careful 
in using equations (46) and (54) as they do not give the 
relations appropriate to the standard structure at the 
limit a -+ 0. 

In both the models of the standard structure and of the 
statistical assembly, we have considered the period 
which is subject to P =  2vM= (1,2)v*~r given by equa- 
tions (4) and (16). Therefore, i f~ / i s  1.8, we have P =  18 
and if A~r is 1.81, it becomes 181 and so on. However, 
such long periods seem to be not realistic. In part III 
of this series, we shall propose a new model for non- 
integral values of the half period, .~r. In this model, 114 
is naturally obtained from the peak shift due to a dis- 
ordered structure between the M and M +  1 layers, 
where A~r lies between M and M +  1. 

The present study has partly been supported by a 
Scientific Research Grant from the Ministry of Educ- 
ation. 

APPENDIX A 
The minimum integer, v*, making v* 34 an integer 

It is convenient to define the minimum positive integer, 
v*, in the relation 

v*2~l=H (h l )  

where H is a positive integer. According as v* is even 
or odd, the standard structure defined by the step 
function S(~) is found to be the complex out-of-step 
structure or the complex APD one, as mentioned below. 

' i / 1  ~ 
-1 ---*- ! 

0 /V//2 /tT,/ 3/V//2 2/1;/ 
f (~)= erf({) , erf(/~-~) , -er f (~- /~)  , -erf(2,~-~) 

Fig. 6. The definition of f(~) and its schematic representa- 
tion. The thick curve indicates the assembly function f(O 
and the thin line the original step function S(~). 

If v* is even, we may put v*= 2Vo. In this case H 
should be odd, for, if H is even, i.e. H=2H0,  we get 

voM = Ho 

which contradicts the definition of v*. Therefore, we 
have 

H = P : o d d  and v*=2v0=2v 

from equation (4). The standard structure in this case 
should be a complex out-of-step structure, because the 
period P = H  is odd. 

If v* is odd, the step next to the v*th step belongs to 
the region where S(~)= - 1  according to equation (3). 
Therefore, another v* steps are necessary for getting 
a period P and hence we have 

P = 2 H =  2v*_~r, v* = v and H =  v*~r = M = P/2. 

In this case the standard structure should be a complex 
APD structure including the simple APD structure. 

Thus we have two cases" 

Case I (v*:even) 

v* = 2v, H =  v'31 = P: odd and the 
standard structure is a complex 
out-of-step structure 

Case II (v* : odd) (A2) 

v* = v, H =  v*M = M = P/2 and the 
standard structure is a complex 
APD structure including the simple 
APD structure. 

This situation is conveniently expressed by the no- 
tations 

v*=(2,1)v or 2v=(1,2)v*, 
and 

H =  v*M=(P,  ffl) or P=(1 ,2 )H (A3) 

where the notation of the form (a, b) implies that 

a for Case I 
(a ,b)= b for Case I I .  (A4) 

APPENDIX B 
Derivation of equation (13) 

Substitution of So(~) in equation (5) into O m in equation 
(12) gives 

8 e  1 
Dm= --~ n=O n'=O (2nq-  1) ( 2 n ' +  1) 

7~ 
× cos --~ (2n' + 1)m 

M 

- 2 ; *  Z ~'* 1 
.=0 .,=0 (2n + 1) + 1) 

x cos - ~  (2n' + 1)m (A5) 
M 
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where the symbols * and ** mean that  the summations 
with respect to n and n' are carried out  over the values 
satisfying the relations 

* n - n ' = q l n  
• * n + n' + 1 = qzH (A6) 

where ql and qz are integers. In this calculation, the 
following relations are used: 

P - 1  2re P-1 2n 
cos ~ np= ~ cos --if- 2vnp 

v=o M p=o 
= P&2v.,rl" = P~., qn 

z , - 1  2re 
~ sin ~ .np=O 

P = O  ~ /  

(A7) 

where 6z,,,,,,.p and &,.,m are Kronecker 's  delta functions 
with r and q: integers. Putting 

O < n l = n - n ' ,  1 < n 2 = n ' - n  and 1 < n a = n + n '  + 1 

and rearranging the similar terms, we obtain f rom 
equation (A5) 

Dm = - - ~  ( 2 n +  1) 2 cos ---z- (2n + 1)m 
M 

+ 2  ~ *  1 
. .= ,  (2n+  1) {2(n" + n ) +  1} 

7~ 
x cos --~ (2n + 1)m 

M 

, , , - i  1 ~ l ]  
- ,=o ~ 2n" (2n+  1) cos - ~  (2n+  1)m ]l 

where the symbol * means that  the summation with 
respect to n"  is carried out over the values satisfying 
the relation 

n"  = qH. 

Since the two terms in the square brackets in the 
above equation are found to cancel each other, D,, 
becomes 

_ 8 P ~ .  1 
D,, ,-  ~ .=z_.0 (2n+  1) 2 

_ 8P ~.~° 1 
rc2 ,,~'x (2n - 1)2 

= P -  2Pzo 

where 

(2n + 1)m (A8) C O S  

M 

- -  cos rc(2n- 1)z 

(A9) 

m mv* 2vm 
z =  M ~ = -Jr-/ . . . . . . .  / ;  (A10) 

and z0 is the principal value of  z and is in the range 

O_<z0<l. ( A l l )  

Putt ing m = 0, we have 

z = z0 = 0 .'.D0 = P 

which gives, by definition, the correct value of  Do. 
Substitution of  equation (A8) into the expression for 

lz in equation (11)gives 

4p2/~_~ 1 oo q } , ~ * *  1 
Iz = ~ (2n~+1)2 + (2n2+1)2- (A12) 

tn  I = 0 n2 = Oj.L i 

where the symbols * and ** mean that  the summations  
with respect to nl and n2 are carried out  over the values 
satisfying the following relations: 

* v ( 2 n l + l ) = q l P + l  O<nl  
• * v ( 2 n 2 + l ) = q 2 P - I  O<n2.  (A13) 

F rom equation (A13) we obtain (see Appendix (7) 

2 h i +  1 =2n*  + 1 + 2 m l H  with ml = 0,1,2, . . .  
2n2 + 1 = - (2n* + 1 + 2m2H) 

with m 2 = - 1 , - 2 , - 3 , . . .  

(A14) 
where n* is the minimum positive integer including 0 
satisfying the relations 

1 < 2n* + 1 = ( Q P  + l ) / v  < 2 H -  1 

and 0 < n * _ H - 1 ,  (A15) 

Q being a positive or negative integer including 0. 
Thus, equation (A12) becomes 

Table 5. Some values o f  x., w + and wE in the statistical assembly shown in Fig. 7 

n 0 1 2 3 . . .  
Xn 0 0"8 0"2 0"6 . . .  
Wn + ½ ½{1 +eft  (0-8)} ~{1 - e r f  (0.2)} ½{1 - e r f  (0.6)} . . .  
wn- ½ ½{1 - e f t  (0"8)} ½{1 +eft  (0"2)} ½{1 +eft  (0"6)} . . .  

0"4 
-1  - ' -  0 1 "8 3"6 5"4 7"2 9 

Fig. 7. The effective value (the vertical thick line) of the nth layer in the statistical assembly deviated from the standard structure, 
([M] I [/ff]) with [M] = (22221), P=  18 and/Q= 1.8. 



J IRO K A K I N O K I  A N D  T E R U A K I  M I N A G A W A  129 

with 

4P z ~ 1 
l z -  

~z z m__Z'_~ (2mH+2n*+  1) z 

1 ~ 1 
=(1,4)--~- m= ~-oo ( m + : @  

(1,4) 
sin z zcx 

(A16) 

2n*+1 QP+I  
x -  - - -  (A17) 

2H v*P 

Equations (A16), (A17) and (A15) give equations (13), 
(14) and (17) respectively. 

APPENDIX C 
Derivation of  equation (A14) 

Equation (A14) in Appendix B is derived from equation 
(A13), i.e. 

* v ( 2 n l + l ) = q i P + l  0<n i  
• * v (2n2+l )=q2P-I  O<nz (A18) 

as follows: let {nl, ql} and {nl+Anl, qi+Aq~} be two 
suc-cessive sets which satisfy the former relation in 
equation (A 18). Taking the difference between the corres- 
ponding two equations, we obtain 

2vAni = PAqi, i.e. v*An~ = HAqi 

from which we get 

Aq~ = v* and Ani = H 

because v* and H have no common divisor from the 
definition of H, i.e. equation (A1). The same result can 
be obtained from the latter relation in equation (A18). 
As a result, the intervals, An of nx and n2 and Aq of qt 
and qz, which satisfy equation (A18) are given by 

An= H and Aq= v*. (A19) 

Let n~ and n~ be the minimum values of nl and nz 
respectively, and let Qt and Q2 be the corresponding 
values of q~ and qz respectively. Then we have, from 
equation (A 18), 

{ 2 v n ~ = Q 1 P + l - v  
2vn~ = Q2P-  l -  v (A20) 

with 

* < H -  1 (A21) 0 < n t * < H - 1  and 0 < n  z 

Taking the sum of the two equations in equation (A20), 
we get 

2v(n~ +n~) = (Ol + o 2 ) e - 2 v  

from which, with equations (4) and (A21), we have the 
relation 

0_<n~' +n~' = (Q~ + Q z ) M -  1 < 2 H - 2 .  

Since (Q~ + Q2)M should be an integer which satisfies 
the above equation, we get at once the results 

= * + n; = H -  1 (A22) QI + Qz v* and nl 

Thus we can calculate nz as 
, t t  t l  nz = nz + mzH mz O, 1,2, . . .  

= H -  1 - n*~ + rn'~ H 

= m ' z H - n ~ - I  mz: 1,2,3, . . . .  
At the same time, we can put 

ni = n~ + mi l l  mi" O, 1,2, . . . .  

Finally we have the relations 

1 2 n l + l = 2 n * + l + 2 m ~ H  with m 1 : 0 , 1 , 2 , . . .  
I 2nz + 1 = - (2n* + 1 + 2mall) 
[ with mz: - 1 , - 2 , - 3 ,  . . .  

(A23) 
with 

1 < 2n* + 1 = (QP + l)/v < 2 H -  1 
and 0 < n * < H - 1 ,  (A24) 

equations (A23) and (A24) giving equations (A14) and 
(A15) in Appendix B. 

APPENDIX D 
Derivation of  the relations (i) to (v) in §4 

Since we have I~=0 for Case II with/:even from equa- 
tion (18), l may be restricted to an odd integer and is 
put as equation (19), i.e. 

l = 2 r  + 1 for Case II. (A25) 

(i) Since we have the relation I~ +p = Iz, we can limit 
l as 0 < l_< P -  1 which is, with equation (A24), the same 
as equation (20), i.e. 

O<_(l,r)<_H-1 and 0 < n * < H - 1 .  (A26) 

Thus the total numbers of different values of (l, r) and 
n* are both equal to H. 

On the other hand, equation (A24) can be rewritten 
a s  

2vn*-  QP=(I ,2r+ 1 ) - v  
.'. n * v * - Q H = ( l , r ) - ½ ( v * , v * - l )  (A27) 

by equation (A3). Since the right hand side of equation 
(A27) is an integer ['.'v* :(even, odd)] and v* and H have 
no common divisor, there should be an infinite number 
of sets of solutions of equation (A27), of the form 
{n* - mH, Q -  my*} with re:integer. Thus we can find 
n* within the region given by equation (A26) for a 
given (l,r). 

If there were different sets, {(l,r),Q} and {(l',r'),Q'}, 
for a given n*, we would have the relation 

( Q ' - Q ) H = ( I - I ' , r - r ' )  (A28) 

from equation (A27). Considering equation (A26), we 
can find no solution for equation (A28) except for 
(l ,r)=(l ' ,r ')  and Q=Q' .  

A C 2 8 A  - 3 
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As a result, there should be one to one correspon- 
dence between (l, r) and n* so long as they are limited 
by equation (A26). 

(ii) Since we have the relation le_ t = It from equation 
(I.27), It, calculated from equation (13) must be equal 
to lt, if l '  is given by 

I ' = P - I ,  i.e. ( l ' , r ' ) = ( H - l , H -  l - r ) .  (A29) 

The equation for (l',r') corresponding to equation 
(A27) is 

n * ' v * - O ' H = ( H - I , H -  l - r ) - ½ ( v * , v * -  l). (A30) 

Taking the sum of equations (A27) and A(30), we get 
(n* +n*' + 1)v*=(Q+Q'  + 1)H 

from which we can derive the Ielations 

n * ' = H - l - n *  and Q ' = v * - I - Q  (A31) 

for the reason that v* and H have no common divisor 
and n* and n*' are limited by equation (A26). Sub- 
stitution of n*' from equation (A31) into equation (13) 
with equation (14) gives I t ,=Ie_t=It ,  i.e. both n ' a n d  
n*' given by equation (A31) give the same intensity. 
Thus, if n* is replaced by n*' for larger n* than p*, n* 
may be further limited as 

0 < n* <p* 
with p * = ½ [ H - 1 ; H - 1 , H - 2 ]  (A32) 

where p* is given by equation (21) with equation (23). 
(iii) The fact that we have solutions, for a given 

(1, r), of equation (A27) which is equivalent to equation 
(A24), means that any (/, 2r + 1) can be expressed in the 
form 

(l,2r+ l )+qP=(2lo+ l)v (A33) 

where q and 10 are integers. Substitution of the right 
hand side of the above equation in the expression for 
I in equation (A24) gives 

2n* + l = 2Io + l + 2QM. 

Putting Q = - m y * ,  we get the relation 

0 < n* = lo-  m H <  H -  1 (A34) 

where m is an integer and is chosen so as to satisfy 
the above inequalities. 

(iv) Substitution of I = ( 0 , M )  with M:odd and 
Q = (½) (v*, v* - 1) into equation (A24) gives 2n* + 1 = H 
from which, by equation (13) with equation (14), we 
obtain the results 

I(0. M) = (1,4). (A35) 

As a result, from equation (11), we get 
P - - 1  

~ D . , = I  for Case I  
m---O 

(A36) 

P - 1  

( - 1 ) " D , , = 4  for Case II-odd. (A37) 
h i = 0  

When M is a half odd integer, we have v* =2,  v=  1 
and P = H :  odd by which equation (A24) becomes 

1 < 2n* + 1 = ~ H +  l for l: even]. < 2 H -  1 (A38) - [ l for 1: odd j -  

so long as l is limited by equation (A26). Substitution 
of equation (A38) into equation (13) with equation 
(14) gives 

1 
for /:even 

nl 
C O S  2 

2P 
It = 1 (A39) 

for t: odd. 
sin2 nl 

2P 

(v) The determination of Q is as follows: it4, H and 
(l, 2r + 1) are conveniently expressed as 

2 Q = M o + A M  M0: integer and 0 < A M <  1 (A40) 

H = H o + A H  Ho=v*Mo and 
I < A H = v * A M < v * - I  (A41) 

l= 2vlo + l '  10: integer and 0 < l '  < 2 v -  1. (A42) 

Substitution of these equations into equation (A24) 
gives 

2vn* + v = Q(1,2) (v* Mo + AH) + 2vlo + l' 

g 
(2g+ 1)v- l '=  10g+ 5 - l '  

0 
5 - l '  

l ' 
0 5 
1 4 
2 3 
3 2 
4 1 

5 0 
6 
7 
8 
9 

Table 6. Values of  (2g + 1)v-  l' [equation(A49)] 

Case I AM: 0-1, 0.3, 0.7, 0.9 (v=5) 
1 2 3 4 5 

15- l '  2 5 - l '  35 - l '  4 5 - l '  55-l" 
6 7 8 

65--l" 75--l' 85--I' 

15 25 35 45 55 65 75 85 
14 24 34 44 54 64 74 84 
13 23 33 43 53 63 73 83 
12 22 32 42 52 62 72 82 
11 21 31 41 51 61 71 81 

10 20 30 40 50 60 70 80 
9 19 29 39 49 59 69 79 
8 18 28 38 48 58 68 78 
7 17 27 37 47 57 67 77 
6 16 26 36 46 56 66 76 
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g 
(2g+ 1)v- / '=  10g+ 5-1 '  

Table 6 (cont.) 

Case II AM: 0.2, 0.4, 0.6, 0.8 (v=5) 
0 1 2 3 
5 - l '  15-1' 25- l '  35- l '  

l 
, 

1 4 14 24 34 
3 2 12 22 32 
5 0 10 20 30 
7 8 18 28 
9 6 16 26 

which is iewritten as 

l' - v + (1,2)QAH= 2v{n* - (Q Mo + 10) } - 2vg (put) 

where g is an integer. Finally we get the two relations 

l ' - v = ( 1 , 2 )  (gv*-QAH) 
O<n*=QMo+lo+g< H - 1 .  

(A43) 
(A44) 

Since v* and AH=v*AM have no common divisor, 
any integer G can be expressed in the form 

G = g'v* - Q'AH = ( g ' -  mAH)v* - (Q'-mv*)AH 

where g' and Q' are any integers which satisfy the above 
equation and m is an undetermined integer. Thus we 
can find infinite numbers of sets for Q and g which 
satisfy equation (A43) for a given l'. Let Q' and g '  be 
any set of them and putting 

Q = Q ' - m v *  and g = g ' - m A H ,  (A45) 

we can rewrite equation (A44) as 

O<n*=Q'Mo+lo+g' -mH<_H-1 (A46) 

by which m can be determined. 
In practice, it is convenient to limit l as in equation 

(A26). In this case, from equation (A27), we can limit 
Q as 

0 _< Q < v* - 1. (A47) 

From equation (A43) with equations (A41), (A42) and 
(A47), we obtain the relation 

0<l'  +(1,2)QAH=(Zg + 1)v<2v(v*- 1) + (0,1) 

from which we get the two relations 

0 < g < v * - 2  (A48) 

(2g + 1)v-  l '  
Q -  (1,2)AH (A49) 

Examples for 

Case I AM: 0.1, 0.3, 0.7, 0.9 
with v* = 10, v = 5, 0 < g < 8 and 
(2g+ l)v= lOg+ 5 

Case II AM: 0.2, 0.4, 0.6, 0.8 
with v* = v = 5, 0 < g < 3 and 
(2g + 1)v= 10g + 5 

are shown in Tables 6 and 2 where the values of 
(2g+l )v - l '  are listed in Table 6 and the obtained 
Q's are listed in Table 2. 

A P P E N D I X  E 
Calculation of equations (45), (46) and (54) 

Substitution of equation (50) with equation (52) into 
equation (49) gives 

C r2 

(:::  w,s,F: )l 

= ~Z=I {s~=l w(~>~S>}exp(i2rm~)r 

= ~, f(n) exp (i2rm~ (A50) 
n = 0  

and 

C 

FZ= Z w(S)Fs(~)F*(~) 
s = l  

= w (S) ep ) exp (i2rcn~) 
S = l  n=O 

x exp ( -  i2z~m~) + conj. ] 

P -- 1 [ Pn~l  
= P -  ~ fz(n) + f2(n) 

n = 0  =1  

P ~ I  f P - - l - - m  

m.=l-- ~ n~=o f(n) f (n+m) } + 

P - - 1  

xexp (-i2z~ m~) + conj. = P -  ~ f2(n)+(F)Z 
n = 0  

from which we have 

- IP-  =0 I z -  (A51) P I,(= ~ f(n) exp (inlO) = I,z , O-- 
rt 

P - - 1  

F z _ ( f f ) z = p _  ~, fz(n) .  (A52) 
n = 0  

Equations (A51) and (A52) give equations (53) and 
(54) respectively. 

Substitution of equation (34) with equation (35) into 
equation (A51) gives, by the use of equation (A7), 

/i = 16v 2 * b2ml+l- ~ * *  b2m2+l 
0 m2=0 

where the symbols * and ** indicate the same meaning 
as in equation (A13). Thus we can use equation (A14) 
with equation (A15) and hence It turns to 

It 16v 2 * (A53) = b2n + 1 + 2mH 
??I= --oo 

A C 28A - 3* 
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= 16v2[l?erf ,,, 

x ~°° sin~-2z~ v(2n* + 1 + 2mH)r/dr/] z 
lffl --~ - -OO 

= 16v z erf (r/)sin ~ -  v(2n + 1)r/ 

x Z a(v*r/-p)dr/]~ 

from which we obtain finally the relation 

= (1,4) 2 ~. erf sin 2z~px 
p = I  

+[0;0 ,1]( -  1) ~* erf (A54) 

where n*, p*, x and the notation [a;b,c] are given by 
equations (17), (21), (14) and (23) respectively• Equa- 
tions (A53) and (A54) give equations (45) and (46) 
respectively• 

From the definition off(G) given by equation (41), 
fz(~) is newly defined as having a periodicity, M, and 

f2(~)=erf2 (1~1) for - ~ -  _ ~ < -~- (A55) 

which can be expanded in Fourier series as 

[~ ' 2re 
f2(~)=ao+ ~ am c o s - ~  m~ (A56) 

,.=~ m 

with 

2 l ~/2 4 l ~/2 a°= - ~  ~o erf z (r/)dr/, am= -~ 
d 0  

2u 
x erf 2 (r/) cos --= mr/dr/. (A57) 

M 

Substitution of equation (A56) with equation (A57) 
into equation (A52) gives 

_ ( , ~  P-1 2zr ) 
F z -  (F) z = P -  Pao+ m=~ll am ,n=0 ~ COS - f f  2vmn 

= P -  Pao + P ~. a,,,~,,, qH 
m=l 

~-0o erfZ (r/) 

x ~ cos 2nqv*r/dr/ 
q = l  

2 

P,  

{ " ( , )  = P -  (2,4) ~. erf z 7 
p = l  

+[0;0,2] erfZ (-if-)} • (A58) 

Equation (A58) gives the right hand side of equation 
(54). In deriving both the equations (A54) and (A58) 
we used the general relation 

I " g ( x ) O ( x - a ) d x =  ½g(a) . 
0 

(A59) 

APPENDIX F 
Remarks on the use of the step function, S0(~) 

From the definition of S(~) in equation (3), we have 

S ( p P ) = I  p:O, + l, + 2, . . .  
S[(2p + 1)M] = - 1 for complex APD structure 

(A60) 

while, from So(~) given by equation (5), we have 

So(pP)=O 
S0[(2p+ 1)M] =0  for complex APD structure• 

(A61) 

Therefore, it is convenient to relate S0(l) to S(~) by a 
conventional expression 

S(~) = S0(G) + S'(~) (A62) 
where 

S'(~)-- ~ {(~¢,pp--(O,1)(~e,(2p+l)M}. (A63) 
~P---- - - o o  

In § 3 and Appendix B, It was calculated not from 
equation (10) but from equation (11) combined with 
equation (12). If Iz is calculated by taking a square of 
I~u~l after ~z is calculated by using the form of equa- 
tion (10), we get an incorrect result as shown below. 

Let ~u(~ °) be the function which is obtained by sub- 
stituting So(~) given by equation (5) into 9'z in equation 
(10). Then, using equations (A7), (A13) and (AI4), we 
have 

1 
~u(~°)= -u- 2m + 1 m = 0  

zc 0 2nl + 1 

. ,-I i2fi_filv(2 m - - - -  ~ sin. + 1)n 
, n  = 0J 

h,z=0j 2n2+ 1) 
• 2P oo 1 

zr, 2 m H +  2n* -t- 1 m =  ~ G O  

= i(1,2) cot rex (A64) 
and hence 

~u(~°)~u(~°)* = (1,4) cot 2 z~x (A65) 

which is different from equation (13). 
On the other hand, let 9'i be the function which is 

obtained by substituting S'(~) given by equation 
(A63) into ~u~ in equation (10), then we have 
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~; -- .. vv - (0,1)d., (2p + 1)M 
n=0 p= --c~ 

x exp S-p-el - - 1 - ( 0 , 1 ) ( - 1 ) L  (A66) 

Therefore, if we put 

g6 = ~,i °) +~t~= 1 -(0 ,1)  ( -  1) t + i(1,2) cot rex, 

then we obtain 

1 
1 + cot 2 rex-  for Case I 

sin 2 rex 
0 for Case II with h even 

I~--gh~,~= 4I~ for Case II with h odd 

1 
with I~ = 1 + cot E rex-  

sin 2 rex 

These results agree with those in equations (13) and 
(18), and also imply that the expression in equation 
(F6), i.e. equation (7) or equation (10) is incorrect. 

In § 3 and Appendix B, I~ was calculated by the use 
of Dm given by equation (12), where we used not S(~) 
but S0(i), and yet we obtained the correct result. If we 
use S(~) defined by equation (A62) in the calculation 
of D m and denote it by D* in distinction from D m in 
equation (12), then we have 

P--1 
D* = ~ S(p)S(p + m) 

p = 0  
P-1 

= ~ {So(p)+S'( .p)}{So(p+m)+S'(p+m)} 
p = 0  

= D., + D~, (A67) 

where Dm represents the remaining three terms not in 
Dm and is calculated as 

D~,= d,.,o + (0,1) ((Jm,O--2CJmM). (A68) 

As a result, the difference between D,. and D* exists 
only in the eases of m = 0 and M. 

On the other hand, when m = 0, Do is expressed and 
calculated as 

P--1 
Do= ~ S2(p)=P (A69) 

p = 0  

because we can calculate S02(~), by the similar trans- 
formations to those from equation (A5) to equation 
(A8), as follows: 

16 oo oo 1 

$2(~)= ~ - . = o . , = 0  ~" ~ ( 2 n + l ) ( 2 n ' + l )  
27~ 

v(2n+ 1)4 sin ~ v(2n' + 1)~ x sin 7 

8 oo 1 

- re2 .~o (2nSr 1) ~z- = 1. (A70) 

We can see from this result that the singularity existing 
in the Fourier series given by equation (5) has dis- 
appeared by taking a square of S0(i), as is also so for 
S(~). 

When m = M for Case II, we can see generally, from 
equation (5), 

s0 (~  + M )  = - S 0 ( i )  
and hence 

P-I  P-1 
DM = ~ So(P)So(p + M) = - ~ S~(p) = - P 

p = 0  p = 0  

which gives the correct value of D M. As a result, D,, 
defined only by So(() as in equation 02)  has given the 
correct result. 

But even when we calculate I~ with the form of equa- 
tion (1 l) by the use of equation 02),  if we change the 
order of summation as 

= So(p)So(p+m) cosmlO 
m=0 p 

P-1 ~.,tm=0P-1 COS } 
= Z So(p).~._, So(p+m) m , O ,  

p = 0  

then we again obtain an incorrect result like equation 
(A65). 

Thus, when we use Fourier expansion, S0(i), of a 
step function, S(~), we should proceed as follows: 

(i) Calculate a given function of S(~) by the use of 
equation (A62) which connects S0(i) with S(~) by the 
correction term, S'(~). 

(ii) Find the special conditions such that the correction 
term, S'(~), has an influence upon the result. [For ex- 
ample, m = 0 and M in equation (A68)]. 

(iii) Examine whether the difference between S(~) 
and S0(i) still exists in the function at the special con- 
ditions, or not. 

~still exists ]. 
(iv) If the difference [disappearsJ in the function, 

~necessary 
the correction term is tunnecessaryj" 
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